Abstract

The effect of pressure on supercritical carbon dioxide (scCO2) has been characterized by using Car-Parrinello molecular dynamics simulations. Structural and dynamical properties along an isotherm of 318.15 K and at pressures ranging from 190 to 5000 bar have been obtained. Intermolecular pair correlation functions and three-dimensional atomic probability density map calculations indicate that the local environment of a central CO2 molecule becomes more structured with increasing pressure. The closest neighbors are predominantly oriented in a distorted T-shaped geometry while neighbors separated by larger distances are likely oriented in a slipped parallel arrangement. The structure of scCO2 at high densities has been compared with that of crystalline CO2. The probability distributions of intramolecular distances narrow down with increasing pressure. A marginal but non-negligible effect of pressure on the instantaneous intramolecular OCO angle is observed, lending credence to the idea that intermolecular interactions between CO2 molecules in an inhomogeneous near neighbor environment could contribute to the observed instantaneous molecular dipole moment. The extent of deviation from a perfect linear geometry of the carbon dioxide molecule decreases with increasing pressure. Time constants derived from reorientational time correlation functions of the molecular backbone compare well with experimental data. Within the range of thermodynamic conditions explored here, no significant changes are observed in the frequencies of intramolecular vibrational modes. However, a blue shift is observed in the low-frequency cage rattling mode with increasing pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.