Abstract

Holometabolous insects inhabit almost every terrestrial ecosystem. The evolutionary success of holometabolous insects stems partly from their developmental program, which includes discrete larval and adult stages. To gain an understanding of how development differs among holometabolous insect taxa, we used cDNA microarray technology to examine differences in gene expression between larval and adult Camponotus festinatus ants. We then compared expression patterns obtained from our study to those observed in the fruitfly Drosophila melanogaster. We found that many genes showed distinct patterns of expression between the larval and adult ant life stages, a result that was confirmed through quantitative reverse-transcriptase polymerase chain reaction. Genes involved in protein metabolism and possessing structural activity tended to be more highly expressed in larval than adult ants. In contrast, genes relatively upregulated in adults possessed a greater diversity of functions and activities. We also discovered that patterns of expression observed for homologous genes in D. melanogaster differed substantially from those observed in C. festinatus. Our results suggest that the specific molecular mechanisms involved in metamorphosis will differ substantially between insect taxa. Systematic investigation of gene expression during development of other taxa will provide additional information on how developmental pathways evolve.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.