Abstract
Some phytophagous insects gain defense from natural enemies by associating with otherwise potentially harmful top predators. Many lycaenid butterfly caterpillars are involved in such interactions with ants: larvae provide carbohydrate rewards from the dorsal nectary organ (DNO) to associated ants in return for protection from natural enemies. The stability of these interactions involves signals that identify the lycaenid caterpillar as a mutualist. However, larvae of some lycaenid species, such as Lycaena xanthoides, are found in close association with ants but do not possess the reward producing DNO. Evaluating the relationship in a phylogenetic framework, we show that the association between L. xanthoides and ants likely evolved from a non-ant-associated ancestor. Behavioral trials also show that L. xanthoides larvae are capable of influencing ant behavior to increase ant tending when faced with a simulated predator attack, without providing DNO-derived rewards to ant associates. These results demonstrate that the DNO is not necessary to maintain associations between lycaenid larvae and ants. Third-party interactions may affect the evolution of mutualisms and consideration of underlying evolutionary history is necessary to understand contemporary species associations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.