Abstract

In the phase transformations of the solid state, situations can occur in which the initial phase transform forming two or more distinct phases. The exact mathematical model for situations where more than one transformation occurs simultaneously or sequentially was proposed by Rios and Villa. The computational simulation was used to study the evolution and visualization of the possible microstructures that these transformations may present. The causal cone methodology was adopted. The simulations were compared with the analytical model to ensure that they occur as expected. The growth of individual grains of each phase was monitored in 3D microstructure evolution. With this monitoring, was possible to extract useful data able to quantify the simulated 3D microstructure. Quantifying the simulated microstructures increase the possibility of the simulations give to the experimentalist insights about the transformations. In this paper, it is verified that each grain evolves in an individual way, as expected, however their growth is similar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.