Abstract
P elements were introduced into M strain genomes by chromosomal contamination (transposition) from P strain chromosomes under conditions of P-M hybrid dysgenesis. A number of independently maintained contaminated lines were subsequently monitored for their ability to induce gonadal (GD) sterility in the progeny of reference crosses, over a period of 60 generations, in two experiments. The efficiency of chromosomal contamination was high; all tested lines acquired P elements following the association of M and P chromosomes in the same genome for a single generation. All the contaminated lines also sustained an initial unstable phase, marked by high frequencies of transposition and sterility within lines, in the absence of P element regulation. Subsequently, each of the lines rapidly evolved to one of three relatively stable strain types whose phenotypic and molecular properties correspond rather closely to those of the P, Q and M' strains that have previously been characterized. The numbers and structures of P elements and the presence or absence of P element regulation during the early generations appeared to be critical factors determining the subsequent course of evolution. On the basis of GD sterility frequencies, both the mean level of P activity, and the average capacity for P element regulation, were reduced in lines raised at 25 degrees, relative to those raised at 20 degrees, during the early generations. This latter result is consistent with the expectation that natural selection will tend to modify the manifestation of dysgenic traits, such as high temperature sterility, which cause a reduction of fitness. However, overall, stochastic factors appeared to predominate in determining the course of evolution of individual lines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.