Abstract
Being a type of carbonaceous material, glassy carbon possesses thermomechanical properties akin to ceramics, offering both mechanical and chemical stability at high temperatures; therefore, it can be applied in electrochemistry and high-temperature manufacturing. However, the direct pyrolysis of a bulk precursor leads to internal pores and cracks, usually resulting in fracture. Our characterization results show that at temperatures below 400 °C, large pores do not form, and pre-carbonized glassy carbon (PGC) formed at 350 °C has a dense microstructure without cracks. It exhibits a high compressive strength of ~370 MPa and flexural strength of ~190 MPa, making it suitable for load-bearing applications. Additionally, the PGC-350 material shows small mass loss (~5%) and reasonably low thermal expansion (2.5 × 10-6/°C) when heated to 350 °C again. These properties suggest the potential of PGC for high-temperature applications. As a demonstration, PGC formed at 350 °C was employed to fabricate molds to press chalcogenide glass blanks, which exhibited favorable molding results for various surface morphologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.