Abstract

The histones H4 are known as highly conserved proteins. However, in ciliates a high degree of variation was found compared both to other eukaryotes and between the ciliate species. To date, only H4 histones of species belonging to two distantly related classes have been investigated. In order to obtain more detailed information on histone H4 variation in ciliates we undertook a comprehensive sequence analysis of PCR-amplified internal H4 fragments from 12 species belonging to seven out of the nine currently recognized ciliate classes. In addition, we used PCR primers to amplify longer fragments of H3 and H4 genes including the intergenic region. The encoded amino acid sequences reveal a high number of differences when compared with those of other eukaryotes and the ciliate species investigated. Furthermore, in some species H4 gene variants were detected, which result in amino acid differences. The greatest number of substitutions and insertions found was in the amino terminal region of the H4 histones. However, all sequences possess a conserved region corresponding to those of all other eukaryotic H4 histones. The histone gene variations were used to reconstruct phylogenetic relationships. The tree from our data matches perfectly with the ribosomal RNA data: The heterotrichs, which were considered as a late branching lineage, diverge at the base of the ciliate tree and groups formerly thought to represent ancestral lineages now appear as highly derived ciliates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.