Abstract

A pilot project for groundwater recharge from rivers is currently being carried out in North China Plain. To investigate the influence of river recharge on groundwater hydrochemical characteristics, dynamic monitoring and analysis of groundwater samples were conducted at a typical recharge site in the Hutuo River alluvial-pluvial fan in the North China Plain from 2019 to 2021. Hydrochemical, isotopic, and multivariate statistical analyses were used to systematically reveal the spatiotemporal variation of groundwater chemistry and its driving factors during groundwater recharge process. The results showed that the groundwater hydrochemical types and characteristics in different recharge areas and recharge periods exhibited obvious spatiotemporal differences. The groundwater type varied from HCO3·SO4-Na·Mg to HCO3·SO4-Ca·Mg in an upstream ecological area, while the groundwater type changed from SO4·HCO3-Mg·Ca to HCO3·SO4-Ca·Mg in the downstream impacted by reclaimed water. Changes in the contents of Ca2+, Mg2+ and HCO3− were mostly controlled by the water–rock interactions and mixing-dilution of recharge water, while the increases in Na+, NO3−, Cl−, SO42− and NO3− contents were mainly due to the infiltration of reclaimed water. Nitrogen and oxygen isotope (δ15N and δ18O) tests and the Bayesian isotope mixing model results further demonstrated that nitrate pollution mainly originated from anthropogenic sources, and the major contribution came from manure and sewage, with an average proportion of 64.6 %. Principal component analysis indicated that water–rock interactions, river-groundwater mixing and redox environment alternation were dominant factors controlling groundwater chemical evolution in groundwater recharge process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call