Abstract

The problem of development and dispersion of complex diseases in human populations requires new views, approaches, hypotheses, and paradigms. Evolutionary medicine provides one of the promising approaches to this problem, putting the disease into an evolutionary context. Unlike classic approaches oriented to proximate issues on structure and mechanisms of a disease, evolutionary considerations are broader. It provides the basis for understanding the origin, dispersion, and maintenance of the high frequencies of pathological phenotypes in modern human populations. In the current paper, we try to review the modern concepts on the evolution of human genetic diversity, to shape the outlines of evolutionary medicine, and to illustrate evolutionary medical problems using our experimental data. Data on genome-wide search for the signals of decanalization and adaptation in the human genome and on related biological processes and diseases are presented. Some hypotheses and concepts of evolutionary medicine may be productive for revealing the mechanisms of origin and dispersion of complex diseases and for pathogenetics of multifactorial diseases. One of such concepts is the hypothesis of decanalization of genome–phenome relationships under natural selection during modern human dispersion. Probably, the high frequency of alleles associated with complex diseases (and partially the high prevalence of diseases themselves) could be explained in the framework of the hypothesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.