Abstract

AbstractWhen defining a new product like an aircraft, space access vehicle or space mission, the Advanced Projects Group evaluates the available design space and compares it with the design space required to accomplish the specified mission. As with any product development process, the general life-cycle characteristics are established first during the conceptual design (CD) phase, clearly before a design proposal can be released to the follow-on design phases such as preliminary design (PD), detail design (DD), flight test (FT), and finally operation and disposal. As a rule of thumb, it can be assumed that around 80% of the flight vehicle configuration and mission tandem are determined during the CD phase alone, which is the key phase where the initial brainstorming has to take place. Clearly, it is the responsibility of the CD team to simulate the entire life-cycle of the project from ‘cradle to grave’ where the focus is on correctness rather accuracy in order to identify the design space and offer an overall proof of design convergence. Currently, the important primary aerospace vehicle and mission design decisions at CD level are still made using extremely simple analysis and heuristics. A reason for this scenario is the difficulty in synthesising the range of individual design disciplines for both, classical and novel aerospace vehicle conceptual designs, in more than an ad hoc fashion. Although the CD segment is seen as the most important step in the product development phase due to its pre-defining function, it is the least well understood part of the entire product evolution process due to its level of abstraction. This paper presents the roadmap towards the next generation of aerospace life-cycle synthesis systems, a software and management process capable to immediately calculate cost and time implications while simultaneously linking design, manufacturing, testing, and operation. A historical review of how design has been accomplished until today is presented. The design approaches are categorised and the characteristics of today’s state-of-the-art design synthesis systems are discussed. A specification for the new class of intelligent generic design synthesis systems is presented capable of satisfying the demands imposed by the new breed of high-performance aircraft, space access vehicles, space missions, and others. Finally, the development status of the next generation aerospace vehicle design synthesis (AVDS-PrADO) simulation-based acquisition environment is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.