Abstract

In this paper, we investigate, in the framework of the theory of open quantum systems, based on completely positive dynamical semigroups, the Markovian dynamics of Gaussian Rényi-2 correlations — quantum entanglement, quantum discord, mutual information and classical correlations in a system composed of two bosonic modes, interacting with a squeezed thermal bath. We show that the time evolution of the Rényi-2 correlations strongly depends on the parameters of the initial Gaussian squeezed thermal state of the considered system and on the parameters characterizing the squeezed thermal bath. It is shown that while Gaussian Rényi-2 entanglement is suppressed in a finite time, due to the interaction with the squeezed thermal bath, the correlations beyond entanglement — Gaussian Rényi-2 discord, classical correlations and mutual information undergo a freezing-like behavior, namely they decay only asymptotically, in the limit of large times. We also illustrate a fundamental hierarchy for bipartite Gaussian correlations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.