Abstract

BackgroundGastropod mitochondrial genomes exhibit an unusually great variety of gene orders compared to other metazoan mitochondrial genome such as e.g those of vertebrates. Hence, gastropod mitochondrial genomes constitute a good model system to study patterns, rates, and mechanisms of mitochondrial genome rearrangement. However, this kind of evolutionary comparative analysis requires a robust phylogenetic framework of the group under study, which has been elusive so far for gastropods in spite of the efforts carried out during the last two decades. Here, we report the complete nucleotide sequence of five mitochondrial genomes of gastropods (Pyramidella dolabrata, Ascobulla fragilis, Siphonaria pectinata, Onchidella celtica, and Myosotella myosotis), and we analyze them together with another ten complete mitochondrial genomes of gastropods currently available in molecular databases in order to reconstruct the phylogenetic relationships among the main lineages of gastropods.ResultsComparative analyses with other mollusk mitochondrial genomes allowed us to describe molecular features and general trends in the evolution of mitochondrial genome organization in gastropods. Phylogenetic reconstruction with commonly used methods of phylogenetic inference (ME, MP, ML, BI) arrived at a single topology, which was used to reconstruct the evolution of mitochondrial gene rearrangements in the group.ConclusionFour main lineages were identified within gastropods: Caenogastropoda, Vetigastropoda, Patellogastropoda, and Heterobranchia. Caenogastropoda and Vetigastropoda are sister taxa, as well as, Patellogastropoda and Heterobranchia. This result rejects the validity of the derived clade Apogastropoda (Caenogastropoda + Heterobranchia). The position of Patellogastropoda remains unclear likely due to long-branch attraction biases. Within Heterobranchia, the most heterogeneous group of gastropods, neither Euthyneura (because of the inclusion of P. dolabrata) nor Pulmonata (polyphyletic) nor Opisthobranchia (because of the inclusion S. pectinata) were recovered as monophyletic groups. The gene order of the Vetigastropoda might represent the ancestral mitochondrial gene order for Gastropoda and we propose that at least three major rearrangements have taken place in the evolution of gastropods: one in the ancestor of Caenogastropoda, another in the ancestor of Patellogastropoda, and one more in the ancestor of Heterobranchia.

Highlights

  • Gastropod mitochondrial genomes exhibit an unusually great variety of gene orders compared to other metazoan mitochondrial genome such as e.g those of vertebrates

  • Their total length ranges from 13,856 bp (P. dolabrata) to 14,745 bp (A. fragilis)

  • Four main lineages were identified within gastropods: Caenogastropoda, Vetigastropoda (H. rubra), Patellogastropoda (L. digitalis) and Heterobranchia

Read more

Summary

Introduction

Gastropod mitochondrial genomes exhibit an unusually great variety of gene orders compared to other metazoan mitochondrial genome such as e.g those of vertebrates. Tandem duplication followed by random loss of redundant genes has been demonstrated to be the main mechanism for gene rearrangement of adjacent tRNAs in vertebrate mt genomes [5]. Other mechanisms such as illegitimate recombination mediated by e.g. topoisomerases need to be invoked to explain observed gene inversions, as well as transpositions of genes to distant positions in non-vertebrate mt genomes [6]. In order to determine rates and mechanisms of gene rearrangement in metazoans, additional comparative analyses of non-vertebrate mt genome gene orders within an evolutionary framework are largely wanting

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call