Abstract

ABSTRACTSilage, one of the most important feed sources for cattle, is vulnerable to contamination by spoilage moulds and mycotoxins because ensilage materials are excellent substrates for fungal growth. The aim of this study was to identify the mycobiota of sorghum silages, to determine the presence of aflatoxins and fumonisins, and to correlate these results with physical parameters of the silage. A total of 275 samples of sorghum were collected from dairy farms in the south-west region of Uruguay were silage practices are developed. The presence of fungi was observed in all of the sorghum samples with values varying from 0.2 × 104 to 4085 × 104 UFC g−1. Significant difference were detected in the total number of fungi during the storage period; at six months there is a high risk of fungal spoilage. The most frequent genera isolated from sorghum samples were Penicillium (70%), Aspergillus (65%), Absidia (40%), Fusarium (35%), Paecilomyces (35%) and Alternaria, Cladosporium, Gliocadium and Mucor (30%). The toxigenic species most frequently found were Penicillium citrinum, Aspergillus flavus and Fusarium nygamai. Only two samples were contaminated by AFB1 with levels of 1 and 14 µg kg–1. Fumonisin was detected in 40% of freshly harvest samples with levels ranged from 533 µg kg–1 to 933 µg kg–1. The use of silo bags seems to be an effective tool to store sorghum. However, the presence of toxigenic fungi show that regular screening for mycotoxins levels in silages must be performed to avoid the exposure of animals to contaminated feed and the introduction of these compounds into the food chain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.