Abstract

Division of labor among functionally specialized modules occurs at all levels of biological organization in both animals and plants. Well-known examples include the evolution of specialized enzymes after gene duplication, the evolution of specialized cell types, limb diversification in arthropods, and the evolution of specialized colony members in many taxa of marine invertebrates and social insects. Here, we identify conditions favoring the evolution of division of labor by means of a general mathematical model. Our starting point is the assumption that modules contribute to two different biological tasks and that the potential of modules to contribute to these tasks is traded off. Our results are phrased in terms of properties of performance functions that map the phenotype of modules to measures of performance. We show that division of labor is favored by three factors: positional effects that predispose modules for one of the tasks, accelerating performance functions, and synergistic interactions between modules. If modules can be lost or damaged, selection for robustness can counteract selection for functional specialization. To illustrate our theory we apply it to the evolution of specialized enzymes coded by duplicated genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call