Abstract

BackgroundA puzzle in evolution is the understanding of how the environment might drive subtle phenotypic variation, and whether this variation is adaptive. Under the neutral evolutionary theory, subtle phenotypes are almost neutral with little adaptive value. To test this idea, we studied the infraspecific variation in flower shape and color in Mammillaria haageana, a species with a wide geographical distribution and phenotypic variation, which populations are often recognized as infraspecific taxa.ResultsWe collected samples from wild populations, kept them in the greenhouse for at least one reproductive year, and collected newly formed flowers. Our first objective was to characterize tepal natural variation in M. haageana through geometric morphometric and multivariate pigmentation analyses. We used landmark-based morphometrics to quantify the trends of shape variation and tepal color-patterns in 20 M. haageana accessions, belonging to five subspecies, plus 8 M. albilanata accessions for comparison as the sister species. We obtained eight geometric morphometric traits for tepal shape and color-patterns. We found broad variation in these traits between accessions belonging to the same subspecies, without taxonomic congruence with those infraspecific units. Also the phenetic cluster analysis showed different grouping patterns among accessions. When we correlated these phenotypes to the environment, we also found that solar radiation might explain the variation in tepal shape and color, suggesting that subtle variation in flower phenotypes might be adaptive. Finally we present anatomical sections in M. haageana subsp. san-angelensis to propose some of the underlying tepal structural features that may give rise to tepal variation.ConclusionsOur geometric morphometric approach of flower shape and color allowed us to identify the main trends of variation in each accession and putative subspecies, but also allowed us to correlate these variation to the environment, and propose anatomical mechanisms underlying this diversity of flower phenotypes.

Highlights

  • The nature of phenotypic variation is a problem that perplexed generations of scientists, including Darwin himself

  • Four shape principal components describe tepal variation in M. haageana and its sister species We characterized shape and color-pattern variation in a collection of 20 M. haageana accessions that belonged to the six subspecies as previously proposed [15], plus eight accessions from the sister species M. albilanata, giving a total of 717 tepals, from 272 flowers, from 28 accessions

  • We found that 99% of the variation was covered by eight Principal Components (PCs), but the 7th and 8th capture less than 0.1% of the variation in each, and their variation was so subtle that could not be described

Read more

Summary

Introduction

The nature of phenotypic variation is a problem that perplexed generations of scientists, including Darwin himself. When studying subtle variation in naturally occurring variants, robust and unbiased phenotyping methods are ideal. Complex phenotypes have been quantified and even genetic bases underlying them have been identified for other organs [6], as well as flowers [7, 8]. A puzzle in evolution is the understanding of how the environment might drive subtle phenotypic variation, and whether this variation is adaptive. Under the neutral evolutionary theory, subtle phenotypes are almost neutral with little adaptive value. To test this idea, we studied the infraspecific variation in flower shape and color in Mammillaria haageana, a species with a wide geographical distribution and phenotypic variation, which populations are often recognized as infraspecific taxa

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call