Abstract

We have investigated the impact of Ru substitution for Co on the behavior of the ferromagnetic superconductor UCoGe by performing x-ray diffraction, magnetization, specific heat and electrical resistivity measurements on polycrystalline samples of the $\mathrm{UCo}_{1-x}\mathrm{Ru}_{x}\mathrm{Ge}$ series ($0\geq x\leq0.9$). The initial Ru substitution up to $x\approx0.1$ leads to a simultaneous sharp increase of the Curie temperature and spontaneous magnetization up to maximum values of $T_{\mathrm{C}}=8.6 K$ and $M_{\mathrm{S}}=0.1 \mu_{\mathrm{B}}$ per formula unit, respectively, whereas superconductivity vanishes already for $x\approx0.03$. Further increase of the Ru content beyond $x\approx0.1$ leads to a precipitous decrease of both, $T_{\mathrm{C}}$ and $M_{\mathrm{S}}$ towards a ferromagnetic quantum critical point (QCP) at $x_{\mathrm{cr}}=0.31$. Consequently the $T-x$ magnetic phase diagram consists of a well-developed ferromagnetic dome. We discuss the evolution of ferromagnetism with $x$ on the basis of band structure changes due to varying 5$f$-ligand hybridization. This scenario is supported by the results of electronic structure calculations and consideration of the simplified periodic Anderson model. The analysis of the temperature dependencies of the electrical resistivity and heat capacity at low temperatures of the samples in the vicinity of the QCP reveals a non-Fermi liquid behavior and assigns the ferromagnetic quantum phase transition to be most likely of a continuous Hertz-Millis type.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.