Abstract

A review is given of the factors determining placental oxygen transfer and the oxygen supply to the fetus. In the case of continuous variables, such as the rate of placental blood flow, it is not possible to trace evolutionary trends. Discontinuous variables, for which we can define character states, are more amenable to analysis. This is exemplified by factors contributing, respectively, to blood oxygen affinity and placental diffusing capacity. Comparative genomics has given fresh insight into the evolution of the beta-globin gene complex. In higher primates, duplication of an embryonic gene yielded HBG-T2, a gene that is expressed in the fetus and confers high oxygen affinity on its haemoglobin. A separate event in ruminants involved duplication of an adult gene, again resulting in a fetally expressed variant (HBB-T3) that conveys high oxygen affinity. In rodents and lagomorphs, where fetal and adult haemoglobin are not different, developmental regulation of 2, 3-diphosphoglycerate ensures the high oxygen affinity of fetal blood. Oxygen diffusing capacity is dependent on diffusion distance, which may vary with the type of interhaemal barrier. It has been shown that epitheliochorial placentation is a derived state and that the common ancestor of placental mammals probably had a placenta of the endotheliochorial type. Where evolutionary trends are implied for mammals as a whole or within orders such as primates they often accompany a switch in reproductive strategy that is manifested in a change of newborn state from poorly developed (altricial) to well developed (precocial).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call