Abstract

The evolution of thermophysical characteristics of uranium oxide (UO2) under irradiation is a critical aspect of nuclear fuel performance of light water reactors. This study examines the effect of high-temperature annealing at 1000 °C - 1600 °C on defect evolution in krypton irradiated UO2 at room temperature. Transmission electron microscopy analysis reveals that the size of irradiation-induced bubbles and dislocation loops increases but their density decreases with annealing temperatures. Perfect dislocation loops with b⇀ = <110> dominate, regardless of the annealing temperature. A rate theory model for extended defect evolution is applied to conclude that current understanding of dynamical loop and bubble evolution at high-temperature annealing is governed by defect coalescence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call