Abstract

Any degree of surface roughness could play a significant role in determining the optical properties of ultra-thin films required for epsilon-near-zero (ENZ) applications. In this report, we have provided a systematic analysis of the evolution of an ENZ mode with increasing surface roughness values and established both experimentally and theoretically that roughness acts as a supporting mechanism for achieving a strong ENZ plasmon resonance response in randomly rough indium tin oxide thin films. For pulsed laser deposited indium tin oxide thin films, ENZ plasmon-mediated absorption is enhanced monotonically with the increasing surface roughness. A value of 99.75%, depicting near-perfect absorption, at a wavelength of 1335 nm for the incidence angle of 50° is demonstrated experimentally via Kretschmann–Raether configuration for the film with the highest surface roughness. A modified transfer matrix method based on the anisotropic Bruggemann effective medium approximation is being used to effectively simulate the experimental spectra, and based on this analysis, an even higher absorption is predicted at lower angles outside the experimentally viable domain. Such a high value of absorption just above the ENZ wavelength is due to the strong electric field enhancement inside the film layer, while in terms of absorption loss, surface roughness leads the way and contributes immensely toward the occurrence of perfect absorption in the collective media. Modification of the ENZ mode dispersion in the presence of a surface roughness layer is also discussed, and observed perfect absorption is recognized as the outcome of the crossover between the internal damping and radiation damping terms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call