Abstract
The central role of metabolism in cell functioning and adaptation has given rise to countless studies on the evolution of enzyme-coding genes and network topology. However, very few studies have addressed the question of how enzyme concentrations change in response to positive selective pressure on the flux, considered a proxy of fitness. In particular, the way cellular constraints, such as resource limitations and co-regulation, affect the adaptive landscape of a pathway under selection has never been analyzed theoretically. To fill this gap, we developed a model of the evolution of enzyme concentrations that combines metabolic control theory and an adaptive dynamics approach, and integrates possible dependencies between enzyme concentrations. We determined the evolutionary equilibria of enzyme concentrations and their range of neutral variation, and showed that they differ with the properties of the enzymes, the constraints applied to the system and the initial enzyme concentrations. Simulations of long-term evolution confirmed all analytical and numerical predictions, even though we relaxed the simplifying assumptions used in the analytical treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.