Abstract

The occurrence of electrons and holes in n-type copper oxides has been achieved by chemical doping, pressure, and/or deoxygenation. However, the observed electronic properties are blurred by the concomitant effects such as change of lattice structure, disorder, etc. Here, we report on successful tuning the electronic band structure of n-type Pr2−xCexCuO4 (x = 0.15) ultrathin films, via the electric double layer transistor technique. Abnormal transport properties, such as multiple sign reversals of Hall resistivity in normal and mixed states, have been revealed within an electrostatic field in range of −2 V to + 2 V, as well as varying the temperature and magnetic field. In the mixed state, the intrinsic anomalous Hall conductivity invokes the contribution of both electron and hole-bands as well as the energy dependent density of states near the Fermi level. The two-band model can also describe the normal state transport properties well, whereas the carrier concentrations of electrons and holes are always enhanced or depressed simultaneously in electric fields. This is in contrast to the scenario of Fermi surface reconstruction by antiferromagnetism, where an anti-correlation is commonly expected.

Highlights

  • A typical picture for this coexistence of electron- and hole-bands comes from a Fermi surface reconstruction

  • The evolution of electronic states by Ce dopants (x) is naturally associated with the Fermi surface reconstruction induced by AFM, invoking the relation between AFM and superconductivity[21]

  • An abnormal temperature- and field-dependent Hall resistivity is observed, which is remarkably suppressed in a positive electrostatic field

Read more

Summary

Introduction

A typical picture for this coexistence of electron- and hole-bands comes from a Fermi surface reconstruction. An abnormal temperature- and field-dependent Hall resistivity is observed, which is remarkably suppressed in a positive electrostatic field.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call