Abstract

Motivated by properties-controlling potential of the strain, we investigate strain dependence of structure, electronic, and magnetic properties of Sr2IrO4 using complementary theoretical tools: ab-initio calculations, analytical approaches (rigid octahedra picture, Slater-Koster integrals), and extended t-{{{mathcal{J}}}} model. We find that strain affects both Ir-Ir distance and Ir-O-Ir angle, and the rigid octahedra picture is not relevant. Second, we find fundamentally different behavior for compressive and tensile strain. One remarkable feature is the formation of two subsets of bond- and orbital-dependent carriers, a compass-like model, under compression. This originates from the strain-induced renormalization of the Ir-O-Ir superexchange and O on-site energy. We also show that under compressive (tensile) strain, Fermi surface becomes highly dispersive (relatively flat). Already at a tensile strain of 1.5%, we observe spectral weight redistribution, with the low-energy band acquiring almost purely singlet character. These results can be directly compared with future experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.