Abstract

Electron phase space holes or vortices (EHs) are electrostatic solitary waves with a bipolar parallel (magnetic field-aligned) electric field. They are formed in a nonlinear stage of electron streaming type instabilities and exist due to electrons trapped within the EH electrostatic potential. The background plasma density gradients, characteristic for both space and laboratory plasmas, can affect the evolution of EHs. In this paper, we use a one-dimensional electrostatic Vlasov–Ampère code (ions are immobile) with periodic boundary conditions to study the evolution of a single EH in inhomogeneous plasmas. We find that the EH propagating along a positive (negative) plasma density gradient is accelerated (decelerated) and narrowed (widened). EH propagating along a positive density gradient results in the acceleration of a relatively small population of trapped electrons to suprathermal energies. Interestingly, a decelerating EH is reflected at the point with the plasma density value dependent only on EH parameters, but independent of the average density gradient in the system. We show that the density gradients result in the development of a unipolar parallel electric field in a vicinity of the EH. A theoretical estimate of the corresponding potential drop along the EH is derived. The results are discussed in the light of EH observations in space plasma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.