Abstract

Sperm competition is widely recognized as a potent force in evolution, influencing male behavior, morphology, and physiology. Recent game theory analyses have examined how sperm competition can influence the evolution of ejaculate expenditure by males and the morphology of sperm contained within ejaculates. Theoretical analyses rest on the assumption that there is sufficient genetic variance in traits important in sperm competition to allow evolving populations to move to the evolutionarily stable equilibrium. Moreover, patterns of genotypic variation can provide valuable insight into the nature of selection currently acting on traits. However, our knowledge of genetic variance underlying traits important in sperm competition is limited. Here we examine patterns of phenotypic and genotypic variation in four sperm competition traits in the dung beetle Onthophagus taurus. Testis weight, ejaculate volume, and copula duration were found to have high coefficients of additive genetic variation (CVAs), which is characteristic of fitness traits and traits subject to sexual selection. Heritabilities were high, and there was some evidence for Y-linked inheritance in testis weight. In contrast, sperm length had a low CVA, which is characteristic of traits subject to stabilizing selection. Nevertheless, there was little residual variance so that the heritability of sperm length exceeded 1.0. Such a pattern is consistent with Y-linked inheritance in sperm length. Interestingly, we found that testis weight and sperm length were genetically correlated with heritable male condition. This finding holds important implications for potential indirect benefits associated with the evolution of polyandry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call