Abstract

The structural scaffolds of many complex natural products are produced by multifunctional type I polyketide synthase (PKS) enzymes that operate as biosynthetic assembly lines. The modular nature of these mega-enzymes presents an opportunity to construct custom biocatalysts built in a lego-like fashion by inserting, deleting, or exchanging native or foreign domains to produce targeted variants of natural polyketides. However, previously engineered PKS enzymes are often impaired resulting in limited production compared to native systems. Here, we show a versatile method for generating and identifying functional chimeric PKS enzymes for synthesizing custom macrolactones and macrolides. PKS genes from the pikromycin and erythromycin pathways were hybridized in Saccharomyces cerevisiae to generate hybrid libraries. We used a 96-well plate format for plasmid purification, transformations, sequencing, protein expression, in vitro reactions and analysis of metabolite formation. Active chimeric enzymes were identified with new functionality. Streptomyces venezuelae strains that expressed these PKS chimeras were capable of producing engineered macrolactones. Furthermore, a macrolactone generated from selected PKS chimeras was fully functionalized into a novel macrolide analogue. This method permits the engineering of PKS pathways as modular building blocks for the production of new antibiotic-like molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.