Abstract

The nucleation and development of dynamic recrystallisation (DRX) has been studied via hot torsion testing of AISI 304 stainless steel. The DRX behaviour was investigated with microstructural analysis and slope changes of flow stress curves. The characteristics of serrated grain boundaries observed by SEM, electron backscattered diffraction and TEM indicated that the nucleated DRX grain size was similar to that of the bulged part of the original grain boundary. The DRX of the alloy was nucleated and developed by strain induced grain boundary migration and by the necklace mechanism. Before the steady state in the flow curve at 1000 ° C and 0.5 s-1, the dynamically recrystallised grains did not remain a constant size and gradually grew to the size of fully DRX grains at steady state (30 μm). The calculation of the grain size was based on X DRX (volume fraction of dynamically recrystallisation) under the assumption that the nucleated DRX grains grow to the steady state continuously. It was found that the calculated grain size of the alloy was good agreement with that of the observed grain size. It is expected that a fine grained steel can be obtained by controlling hot deformation conditions on the basis of newly developed equations for predicting DRX behaviour.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.