Abstract

Two-component nanoplasmas generated by strong-field ionization of doped helium nanodroplets are studied in a pump–probe experiment using few-cycle laser pulses in combination with molecular dynamics simulations. High yields of helium ions and a pronounced resonance structure in the pump–probe transients which is droplet size dependent reveal the evolution of the dopant-induced helium nanoplasma with an active role for He shells in the ensuing dynamics. The pump–probe dynamics is interpreted in terms of strong inner ionization by the pump pulse and resonant heating by the probe pulse which controls the final charge states detected via the frustration of electron–ion recombination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.