Abstract
Abstract The Japanese medaka fish Oryzias latipes has an XX/XY sex-determination system. The Y-linked sex-determination gene DMY is a duplicate of the autosomal gene DMRT1, which encodes a DM-domain-containing transcriptional factor. DMY appears to have originated recently within Oryzias, allowing a detailed evolutionary study of the initial steps that led to the new gene and new sex-determination system. Here I analyze the publicly available DMRT1 and DMY gene sequences of Oryzias species and report the following findings. First, the synonymous substitution rate in DMY is 1.73 times that in DMRT1, consistent with the male-driven evolution hypothesis. Second, the ratio of the rate of nonsynonymous nucleotide substitution (dN) to that of synonymous substitution (dS) is significantly higher in DMY than in DMRT1. Third, in DMRT1, the dN/dS ratio for the DM domain is lower than that for non-DM regions, as expected from the functional importance of the DM domain. But in DMY, the opposite is observed and the DM domain is likely under positive Darwinian selection. Fourth, only one characteristic amino acid distinguishes all DMY sequences from all DMRT1 sequences, suggesting that a single amino acid change may be largely responsible for the establishment of DMY as the male sex-determination gene in medaka fish.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.