Abstract

Detonations usually form through either direct initiation or deflagration-to-detonation transition (DDT). In this work, a detonation initiation process is introduced that shows attributes from each of these two processes. Energy is deposited into a finite volume of fluid in an amount of time that is similar to the acoustic time scale of the heated fluid volume. Two-dimensional simulations of the reactive Euler equations are used to solve for the evolving detonation initiation process. The results show behaviour similar to both direct initiation and DDT. Localized reaction transients are shown to be intimately related to the appearance of a detonation. Thermomechanical concepts are used to provide physical interpretations of the computational results in terms of the interaction between compressibility phenomena on the acoustic time scale and localized, spatially resolved, chemical energy addition on a heat-addition time scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.