Abstract

Stress transfer associated with an earthquake, which may result in the seismic triggering of aftershocks (earthquake–earthquake interactions) and/or increased volcanic activity (earthquake–volcano interactions), is a well-documented phenomenon. However limited studies have been undertaken concerning volcanic triggering of activity at neighbouring volcanoes (volcano–volcano interactions). Here we present new deformation and stress modelling results utilising a wealth of diverse geodetic observations acquired during the 2014–2015 unrest and eruption within the Bárdarbunga volcanic system. These comprise a combination of InSAR, GPS, LiDAR, radar profiling and optical satellite measurements. We find a strong correlation between the locations of increased seismicity at nearby Tungnafellsjökull volcano and regions of increased tensile and Coulomb stress changes. Our results suggest that stress transfer during this major event has resulted in earthquake triggering at the neighbouring Tungnafellsjökull volcano by unclamping faults within the associated fissure swarm. This work has immediate application to volcano monitoring; to distinguish the difference between stress transfer and new intrusive activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.