Abstract
Abstract The optical properties and microstructural degradation of a multicomponent glass after exposure to 1 MeV electrons for fluences of 10 13 to 10 16 e − /cm 2 , as well as the recovery during annealing at room temperature (RT) for the fluence of 10 16 e − /cm 2 , are investigated. The non-bridging oxygen hole centers (NBOHCs), as well as trapped electrons (TEs), are mainly attributed to optical absorption bands and paramagnetic spectra. In comparison of the exponential curves, the in-growth kinetics for each type of defect with increasing fluence are separable, and a new linearly-combined exponential model is used to describe the structural responses during irradiation. Accordingly, RT bleaching curves of defects follow a linearly-combined exponential decay function. Consistent results from optical and paramagnetic signals suggest that this linearly-combined model provides a reasonable kinetic description of the growth and bleaching process of defects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.