Abstract

Alternate changes of sexual and asexual generations was studied theoretically by numerical analyses, from the viewpoint of host-parasite infective interactions. The host species was considered a diploid organism, characterized by two loci determining parasite resistance type and sexual strategy, between which a linkage exists to a certain degree. The sexual reproductive strategy was assumed to be determined by three alleles: asexual, complete sexual and cyclic sexual alleles. The effect of the parasites was represented by decreasing fitness functions of each host-type frequency. Numerical analyses of various linkages between genes and frequency dependence of host fitness revealed that the dynamics varied depending on whether the cyclic sexual allele was dominant or recessive against the complete sexual allele. When the cyclic sexual allele was dominant, the cyclic sexual strain persisted under intermediate frequency dependence of host fitness. On the other hand, when the cyclic sexual allele was recessive, it always tended to spread and to be maintained in the population. In such situations, both complete and cyclic sexual strains coexist, but the asexual strain is lost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call