Abstract
Temporal theta activity in coalescence with slow-wave (TTA-SW) is one of the first neurobiomarkers of the neurodevelopment of perisylvian networks in the electroencephalography (EEG). Dynamic changes in the microstructure and activity within neural networks are reflected in the EEG. Slow oscillation slope can reflect synaptic strength, and cross-frequency coupling (CFC), associated with several putative functions in adults, can reflect neural communication. Here, we investigated the evolution of CFC, in terms of SW theta phase-amplitude coupling (PAC), during the course of very early development between 25 and 32 weeks of gestational age in 23 premature neonates. We used high-resolution EEG and dipole models as spatial filters to extract the source waveforms corresponding to TTA-SW. We also carried out nonlinear phase-dependent correlation measurements to examine whether the characteristics of the SW slopes are associated with TTA-SW coupling. We show that neurodevelopment leads to temporal accumulation of the SW theta PAC toward the trough of SW. Steepness of the negative going slope of SW determined the degree of this coupling. Systematic modulation of SW-TTA CFC during development is a signature of the complex development of local cortico-cortical perisylvian networks and distant thalamo-cortical neural circuits driving this nested activity over the perisylvian networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.