Abstract
This article describes recent trends of high-field solid-state NMR (SSNMR) experiments for small organic molecules and biomolecules using 13C and 15N CPMAS under ultra-fast MAS at a spinning speed (νR) of 80–100kHz. First, we illustrate major differences between a modern low-power RF scheme using UFMAS in an ultra-high field and a traditional CPMAS scheme using a moderate sample spinning in a lower field. Features and sensitivity advantage of a low-power RF scheme using UFMAS and a small sample coil are summarized for CPMAS-based experiments. Our 1D 13C CPMAS experiments for uniformly 13C- and 15N-labeled alanine demonstrated that the sensitivity per given sample amount obtained at νR of 100kHz and a 1H NMR frequency (νH) of 750.1MHz is ~10 fold higher than that of a traditional CPMAS experiment obtained at νR of 20kHz and νH of 400.2MHz. A comparison of different 1H-decoupling schemes in CPMAS at νR of 100kHz for the same sample demonstrated that low-power WALTZ-16 decoupling unexpectedly displayed superior performance over traditional low-power schemes designed for SSNMR such as TPPM and XiX in a range of decoupling field strengths of 5–20kHz. Excellent 1H decoupling performance of WALTZ-16 was confirmed on a protein microcrystal sample of GB1 at νR of 80kHz. We also discuss the feasibility of a SSNMR microanalysis of a GB1 protein sample in a scale of 1nmol to 80nmol by 1H-detected 2D 15N/1H SSNMR by a synergetic use of a high field, a low-power RF scheme, a paramagnetic-assisted condensed data collection (PACC), and UFMAS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.