Abstract

CpG islands are discrete regions of DNA with significantly greater frequencies of CpG doublets than bulk genomic DNA. They are most frequently associated with the 5′-ends of housekeeping genes and are involved in the regulation of their expression. In this study, the structure and evolution of CpG islands within genes of the myc family were evaluated with the protein-coding sequences of animals and their transducing viruses. These evaluations relied on a gene tree for the entire myc family to test the origins of CpG islands within their two protein-coding exons. Overall, CG-very rich and CG-rich islands are associated with exon 2 of the different myc genes of warm-blooded vertebrates and with exon 3 of the N-myc and s-myc sequences of mammals, but not birds. These overall distributions of well-developed islands can be related to the major transitions of the CG-rich genomes of warm-blooded vertebrates from the CG-poor ones of other animals. In turn, the greater variability of well-developed islands within exon 3 of the N-myc gene and among the different retrogenes of the myc family can be attributed to their reduced functional constraints, as evidenced by their limited and very restricted patterns of expression, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call