Abstract

Reproductive isolation increases with genetic distance between species. Although sexual selection may drive divergence of sexual signals and traits, causing rapid evolution of sexual isolation, quantitative data supporting this idea are rare. We examine the rates of divergence of a species-specific courtship signal, sexual isolation, and postmating isolation in the Drosophila willistoni group. Both types of isolation increase with genetic distance and postmating isolation is the most strongly correlated with genetic divergence, suggesting this has the least variable divergence rate. Song divergence is not correlated with genetic divergence. Homoplasy in song pattern results in poorly resolved phylogenies that are different from molecular phylogenies. Song evolves more quickly than sexual isolation, which evolves more quickly than postmating isolation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.