Abstract

A gauge-invariant, linear cosmological perturbation theory of an almost homogeneous and isotropic universe with dynamically evolving Newton constant G and cosmological constant $\Lambda$ is presented. The equations governing the evolution of the comoving fractional spatial gradients of the matter density, G and $\Lambda$ are thus obtained. Explicit solutions are discussed in cosmologies, featuring an accelerated expansion, where both G and $\Lambda$ vary according to renormalization group equations in the vicinity of an ultraviolet fixed point. Finally, a similar analysis is carried out in the late universe regime described by the part of the renormalization group trajectory close to the gaussian fixed point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.