Abstract

Recently, we solved Einstein’s field equations to obtain the exact solution of the cosmological model with the Morris–Thorne-type wormhole. We found the apparent horizons and analyzed their geometric natures, including the causal structures. We also derived the Hawking temperature near the apparent cosmological horizon. In this paper, we investigate the dynamic properties of the apparent horizons under the matter-dominated universe and lambda-dominated universe. As a more realistic universe, we also adopt the [Formula: see text]CDM universe which contains both the matter and lambda. The past light cone and the particle horizon are examined for what happens in the case of the model with wormhole. Since the spatial coordinates of the spacetime with the wormhole are limited outside the throat, the past light cone can be operated by removing the smaller-than-wormhole region. The past light cones without wormhole begin to start earlier than the past light cones with wormhole in conformal time-proper distance coordinates. The light cone consists of two parts: the information from our universe and the information from other universe or far distant region through the wormhole. Therefore, the particle horizon distance determined from the observer’s past light cone cannot be defined in a unique way.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call