Abstract

PtRh alloys are highly active in the anodic methanol oxidation reaction (MOR) but few studies have looked at their evolution in the composition and structure during the catalytic process. Herein, a uniformly dispersed carbon-supported PtRh (PtRh/C) catalyst with Rh-enriched surface was synthesized via a facial hydrothermal method. By recording the performance of different cyclic voltammetry (CV) cycles during electrocatalytic MOR process in acid, the evolution of PtRh/C in composition and structure was elucidated. During the first 80 CV cycles, the rapid dissolution of the surface Rh atoms and the exposure of active Pt sites lead to the dramatic enhancement of the current density. When further continue the CV cycling, Pt atoms on the surface have aggregated and recombined to form a tightly aligned Pt-enriched surface. But Rh tends to be stable and catalytic performance reaches a relatively stable status with slightly decreased activity. Compared with the performance of PtRu/C catalyst, it can be concluded that PtRh/C has better stability and higher activity based on the less soluble property of Rh than Ru.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.