Abstract

Studying the interaction between evolutionary and ecological processes (i.e. eco-evolutionary dynamics) has great potential to improve our understanding of biological processes such as species interactions, community assembly and ecosystem functions. However, most experimental studies have been conducted under controlled laboratory or mesocosm conditions, and the importance of these interactions in natural field communities has not been evaluated. In this study, we focused on the contemporary divergence of a competitive trait (the height-width ratio) of an annual grass Eleusine indica between urban and farmland populations and investigated how trait evolution affects ecological processes by transplanting E. indica individuals from lineages with different trait values into semi-natural grassland. The competitive trait of the transplanted individuals not only affected their own growth and fitness, but also affected the vegetative growth of the competing species and the species diversity. These results indicate that the evolution of competitive traits, even in a single species, can influence the community species diversity through changes in interspecific interactions. Eco-evolutionary interactions therefore play a crucial role in natural field environments. Our results suggest that understanding intraspecific variation in competitive traits driven by rapid evolution is essential for understanding interspecific competitive interactions, community assembly and species diversity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call