Abstract

AbstractThe charge deep-level transient spectroscopy (Q-DLTS) experiments on undoped hydrogenated amorphous silicon (a-Si:H) demonstrate that during light soaking the states in the upper part of the gap disappear, while additional states around and below midgap are created. Since no direct correlation is observed in light-induced changes of the three groups of states that we identify from the Q-DLTS signal, we believe that we deal with three different types of defects. Positively charged states above midgap are related to a complex formed by a hydrogen molecule and a dangling bond. Negatively charged states below midgap are attributed to floating bonds. Various trends in the evolution of dark conductivity due to light soaking indicate that the kinetics of light-induced changes of the three gap-state components depend on their initial energy distributions and on the spectrum and intensity of light during exposure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.