Abstract
The evolution of carbon nanostructures during coal graphitization was investigated. The X-ray diffraction (XRD) results showed that amorphous and microcrystalline carbon coexist in anthracite and meta-anthracite, and the latter has a higher proportion of microcrystalline carbon; additionally, semi-graphite and coal-based graphite are mostly composed of crystalline carbon. Coal graphitization starts in anthracite, accompanied by an increase in crystallite size and a decrease in interplanar spacing nonlinearly, especially in semi-graphite, and a large ordered structure is formed in coal-based graphite. The high-resolution transmission electron microscopy (HRTEM) results intuitively reveal the graphitization process by false-colored microphotography, and both the XRD and HRTEM results indicate similar evolution paths. Four types of carbon nanostructures, namely, amorphous, turbostratic, concentric and graphitic-like structures, are identified according to their morphology. Aromatic fringes are arranged randomly in the amorphous structure and are composed of amorphous carbon; local ordering occurs in the turbostratic structure and is commonly observed in anthracite and meta-anthracite. In addition, a concentric structure with hollow pores and parallel annular aromatic fringes was observed, indicating multiple preferred orientations, and the graphitic-like structure was composed of parallel aromatic fringes. Micropores provide the necessary adjustment space for the ordered conversion of carbon nanostructures, and the flattening and merging of micropores may contribute to the enhancement of graphitization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.