Abstract

Carbide precipitation from the steel matrix during long-term high-temperature exposure can adversely affect the fracture toughness and high-temperature creep resistance of materials with implications on the performance of power plant components. In the present work, carbide evolution in 2.25Cr-1Mo steel after long-term aging during service was investigated. Boiler pipe samples of this steel were removed from a supercritical water-cooled coal-fired power plant after service times of 17 and 28 years and a mean operational temperature of 810 K (537 °C). The carbide precipitation and coarsening effects were studied using the carbon extraction replica technique followed by analysis using transmission electron microscopy and energy dispersive X-ray spectroscopy. The carbides extracted using an electrolytic technique were also analyzed using X-ray diffraction to evaluate phase transformations of the carbides during long-term service. Small ball punch and Vickers hardness were used to evaluate the changes in mechanical performance after long-term aging during service.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call