Abstract

Multiple studies have sought to characterize the mechanical behavior of callus tissue in vivo during distraction osteogenesis. The aims of such studies are to understand the mechanobiology of distraction and elucidate the complex viscoelasticity and evolution of the tissue. The former objective has direct clinical relevance to surgical technique and process control while the latter is necessary for the calibration and validation of the predictive healing models. Such models seek to reduce the researcher's dependence on animal studies and prospectively allow improved surgical planning. To date, no study has been capable of controlling the mechanical conditions sufficiently enough to decouple the distraction process from the secondary mechanical stimulation associated with the finite stiffness of the fixation constructs employed. It is the goal of this work to understand the mechanobiology of pure distraction as well as characterize viscoelastic tissue behavior under precisely defined mechanical conditions. This is achieved using a novel lateral distraction model. The structural integrity of the bone is maintained, allowing the collection of force relaxation data due to a stepwise distraction process without the superimposed influence of secondary mechanical stimulation. The average instantaneous modulus increases from approximately 2 kPa to approximately 1100 kPa while the equilibrium modulus increases from approximately 0 kPa to 200 kPa over the distraction period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.