Abstract
T7 RNA polymerase (RNAP) is a powerful protein scaffold for the construction of synthetic biology tools and biosensors. However, both T7 RNAP and its split variants are intolerant to C-terminal modifications or fusions, thus placing a key limitation on their engineering and deployment. Here, we use rapid continuous-evolution approaches to evolve both full-length and split T7 RNAP variants that tolerate modified C termini and fusions to entire other proteins. Moreover, we show that the evolved split C-terminal RNAP variants can function as small-molecule biosensors, even in the context of large C-terminal fusions. This work provides a panel of modified RNAP variants with robust activity and tolerance to C-terminal fusions, and provides insights into the biophysical requirements of the C-terminal carboxylic acid functional group of T7 RNAP.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chembiochem : a European journal of chemical biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.