Abstract

AbstractGas is often emanated from the sea bed during a subsea oil and gas blowout. The size of a gas bubble changes due to gas dissolution in the ambient water and expansion as a result of a decrease in water pressure during the rise. It is important to understand the fate and transport of gas bubbles for the purpose of environmental and safety concerns. In this paper, we used the numerical model, VDROP‐J to simulate gas formation in jet/plume upon release, and dissolution and expansion while bubble rising during a relatively shallow subsea gas blowout. The model predictions were an excellent match to the experimental data. Then a gas dissolution and expansion module was included in the VDROP‐J model to predict the fate and transport of methane bubbles rising due to a blowout through a 0.10 m vertical orifice. The numerical results indicated that gas bubbles would increase the mixing energy in released jets, especially at small distances and large distances from the orifice. This means that models that predict the bubble size distribution (BSD) should account for this additional mixing energy. It was also found that only bubbles of certain sizes would reach the water surfaces; small bubbles dissolve fast in the water column, while the size of the large bubbles decreases. This resulted in a BSD that was bimodal near the orifice, and then became unimodal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.