Abstract

It is demonstrated that glassy carbon powder can be thermochemically activated. During activation, a film with open pores is created on the glassy carbon particles. This film has a large internal surface area, which is accessible to liquids and gases. A simple model for the evolution of the internal surface area in glassy carbon powder during thermochemical gas-phase oxidation is also presented and compared with experimental data. Experimental results are in qualitative agreement with the model. We found that a sharp particle size distribution is desirable with regard to potential technical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.