Abstract

The entropy evolution properties of field (atom) in a moving cascade three-level atom interacting with a single-mode field are studied through two photon transitions. When the atom is initially in coherent state, the influences of the atomic motion, the field-mode structure parameter and the initial average photon number on the evolution of the entropy are discussed. The results show that the entropy evolution period of the field is dependent of the atomic motion and the field-mode structure parameter. However, the parameter of the initial average photon number will neither lengthen nor shorten the entropy evolution period of the field, but the numerical values of maximum and sub-minimum of entropy will be affected by it.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.