Abstract

In this article, we present fluorescent guanidiniocarbonyl-indoles as versatile oxo-anion binders. Herein, the guanidiniocarbonyl-indole (GCI) and methoxy-guanidiniocarbonyl-indole (MGCI) were investigated as ethylamides and compared with the well-known guanidiniocarbonyl-pyrrole (GCP) concerning their photophysical properties as well as their binding behavior towards oxo-anions. Hence, a variety of anionic species, such as carboxylates, phosphonates and sulfonates, have been studied regarding their binding properties with GCP, GCI and MGCI using UV-Vis titrations, in combination with the determination of the complex stoichiometry using the Job method. The emission properties were studied in relation to the pH value using fluorescence spectroscopy as well as the determination of the photoluminescence quantum yields (PLQY). Density functional theory (DFT) calculations were undertaken to obtain a better understanding of the ground-lying electronic properties of the investigated oxo-anion binders. Additionally, X-ray diffraction of GCP and GCI was conducted. We found that GCI and MGCI efficiently bind carboxylates, phosphonates and sulfonates in buffered aqueous solution and in a similar range as GCP (Kass ≈ 1000–18,000 M−1, in bis-tris buffer, pH = 6); thus, they could be regarded as promising emissive oxo-anion binders. They also exhibit a visible fluorescence with a sufficient PLQY. Additionally, the excitation and emission wavelength of MGCI was successfully shifted closer to the visible region of the electromagnetic spectrum by introducing a methoxy-group into the core structure, which makes them interesting for biological applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.