Abstract

Immune system processes serve as the backbone of animal defences against pathogens and thus have evolved under strong selection and coevolutionary dynamics. Most microorganisms that animals encounter, however, are not harmful, and many are actually beneficial. Selection should act on hosts to maintain these associations while preventing exploitation of within-host resources. Here, we consider how several key aspects of beneficial symbiotic associations may shape host immune system evolution. When host immunity is used to regulate symbiont populations, there should be selection to evolve and maintain targeted immune responses that recognize symbionts and suppress but not eliminate symbiont populations. Associating with protective symbionts could relax selection on the maintenance of redundant host-derived immune responses. Alternatively, symbionts could facilitate the evolution of host immune responses if symbiont-conferred protection allows for persistence of host populations that can then adapt. The trajectory of immune system evolution will likely differ based on the type of immunity involved, the symbiont transmission mode and the costs and benefits of immune system function. Overall, the expected influence of beneficial symbiosis on immunity evolution depends on how the host immune system interacts with symbionts, with some interactions leading to constraints while others possibly relax selection on immune system maintenance. This article is part of the theme issue 'The role of the microbiome in host evolution'.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call